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ABSTRACT

The analog-to-digital conversion systems used in past Interplane-

tary Monitoring Platform spacecraft are reviewed to indicate why a

new voltage-controlled oscillator is required and what characteristics

are desirable for the new oscillator. Since the system developed em-

ploys Metal Oxide Semiconductor Field Effect Transistors (MOSFETS),
this type of transistor is described.

Analysis, design, and developmental innovations are described in

detail for the system, which is composed of an analog commutator, a

voltage-to-frequency oscillator, an internal voltage regulator, and a

digital storage register. The system performance using special cali-

bration equipment is described in detail for the operation over a nomi-

nal 0 to +5 volt input with a 5-millisecond sample time. The linearity

is within +/-0.5 percent of the 6-kHz to 46-kHz frequency range. Tests

indicate long-term stability is about +/-0.2 percent over a three-month

period, whereas short-term stability is +/-0.5 percent after warmup.

The system described can be adapted to permit measurements at

hundreds of megohms impedance. The time constants can be changed

to allow a wide range of frequencies and sample times. The applica-

tions for this analog-to-digital conversion appear quite broad and may

find use where microminiaturization and moderate sample times are

desired.
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A SPACECRAFT ANALOG-TO-DIGITAL
CONVERSION SYSTEM EMPLOYING MOSFETS

by

Donald C. Lokerson

Goddard Space Flight Center

INTRODUCTION

The Interplanetary Monitoring Platform (IMP) spacecraft contain sensors which produce volt-

ages proportional to temperature, current, and other parameters; these voltages must be commu-
tated into an analog-to-digital converter. This conversion is performed by gating the output of a

voltage-controlled oscillator into a binary accumulator for a fixed time period. Because this con-

version averages the sensor voltage over the sample period, greater immunity to noise can be

achieved than with the more conventional successive-approximation analog-to-digital converter.

Recent advances in the production of Metal Oxide Semiconductor Field Effect Transistors

(MOSFETS) have allowed the IMP analog-to-digital conversion system to take advantage of the ex-

cellent properties of these devices. They have extremely high-input-impedance gates and are

easily integrated on one chip in large quantities. The analog commutator, voltage-controlled oscil-

lator, and accumulator in the system are mainly composed of integrated circuit MOSFETS.

The system to be described in detail commutates analog voltages from ground to +5 volts into

a linear voltage-to-frequency oscillator which can be gated "on" for 5.0 milliseconds. The output
frequency of 6 kHz to 46 kHz is accumulated by an 8-bit binary counter which is completely inte-

grated on one chip.

A history of similar analog-to-digital converters will be provided as a background for com-

parison of such earlier systems with the new system. Then a detailed discussion of the new sys-

tem, to be used in future IMP spacecraft, will serve as one example of the possible applications

of MOSFETS in analog-to-digital conversion.

HISTORY OF THE DEVELOPMENT OF THIS ANALOG-TO-DIGITAL CONVERTER

Previous IMP spacecraft employed pulse-frequency modulation (PFM) channel coding of both

analog and digital data. Voltage-controlled oscillators were employed to produce these pulse fre-

quencies directly from the analog voltages. A 5-kHz to 15-kHz magnetic-core multivibrator was
selected for long-term stability. On IMP D and E, an 8-bit accumulator was used to digitize some
of the analog data by sampling the oscillator frequency for 20 milliseconds.
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Future spacecraft will require analog-to-digital conversions as frequently as every 5 milli-

seconds, thus a new oscillator will be required. The difficulties in temperature compensation of

the magnetic-core oscillator and the desire to cover a much wider frequency range increase the

desirability of other methods of controlling the oscillator frequency. The IMP D and E oscillator

required presetting an accumulator and allowing it to overflow once before the normal readout

occurred. Thus it could "underflow" if the fre-

quency became too low. Avoiding such a pos-

sibility was one objective of the new design.

The first MOSFET analog oscillator studied
v --|HL ,-11--"----’-". OUTPUT

c --I \ employed a constant current discharge of a
1 i|-IL I_||_ L WAVEFORM

J "- ’F^ 2 (^\ variable-height sawtooth; however, short-term

H 4 / stability and linearity were poor because of dif-
+v +v / +v
WAVEFORM WAVEFORM ficulty in controlling the sawtooth resetting.

(C) (C)
WAVEFORM The second approach employed the MOSFET

(C) tV.___. circuit shown in Figure 1. As V;N is made more
^\ K ’K. N*-LOW-INPUT VOLTAGE

1 >J >-^ "^-y] ,<-THRESHOLD VOLTAGE negative, the effective impedance of Lg decreases,
W V YV^-HIGH-INPUT VOLTAGE yius increasing the oscillator frequency. The

PTT^ rV MOSFET changed impedance too quickly to oper-

(2) ------’-/ L^ 1-L/-^ 1_ ate over the 5-volt range desired; thus further

r^\ development was not considered.

The third MOSFET analog oscillator proved

the most promising, because linearity and tem-
MG perature coefficients could be well compensated

Figure 1-Second MOSFET oscillator considered, over a very wide range of frequency. This oscil-

lator will be described in detail.

A class of linear-period oscillators was discounted because the distortion in transfer function

is detrimental, as shown in Figure 2. The digitization accuracy is not constant across the voltage

range, a result which is undesirable. Figure 2 puts a temperature sensor voltage response through

the analog-to-digital conversion both for the linear-period and for the linear-frequency transforma-

tion, with the dashed lines showing the distortion produced by the linear-period oscillator.

SYSTEM REQUIREMENTS

The design goals for the IMP H, I, and J spacecraft analog-to-digital conversion are:

1. Normal input voltage range 0 to +5 volts

2. Operating input voltage range -0.5 to +5.5 volts

3. Digitization resolution 0.5%

4. Calibration and linearity over normal voltage range:
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0.4 VOLTS

S +4 N. +4 \\ \,
0 \ \ LINEAR-FREQUENCY
> N. ^ \ \^ ^^ OSCILLATOR

+3 \ ^ +3 \ \. .^^^
S VOLT \ >_ \ \^- LINEAR-PERIOD
5 20C ----< ^ \ \ OSCILLATOR

O - ^\ ^2 \ ,><^
^ v v^\a +1 0.5 VOLTS \. +1 ^ \

20C ---r’- -------^---------^Kk _______1 " ^--^-40 -20 0 +20 +40 +60 +80 0 :0 h30 230 256
SENSOR TEMPERATURE, OSC. OUTPUT PULSES

C

i< \ {

256
20 COUNTS 256 [-
--20C--\ /

230 ^\ 230 /

^ /^7-- ^ ---y
/ / /

8 / ^> /
40 COUNTS / / ’-’ /

5 20C ~^/ S /
^ / / ^ /8 130 / /__ ___130 -___ I/
3 / /\ "’’^ y7^
5 16 COUNTS / / \ /
5 20C / // \ 5 /
5 / / 110 COUNTS 5 /

^30 J^- ^"’ ’5~- j ./
’’2 COUNTS /’ /^

" -I
20"

L_^_______ o ^l /
-40 -20 0 +20 +40 +60 +80 30 130 230 256

SENSOR TEMPERATURE, OSC OUTPUT PULSES
C

Figure 2-Effect of oscillator linearity.

a. +10C to +30C +/-1/2 count

b. -5C to +45C +/-1 count

c. -35C to +85C +/-3 counts
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5. Voltage input loading by analog oscillator:

a. less than .04 microamperes at ground

b. more than 5 megohms at 5 volts

6. Ground-to-5-volt square wave input voltage response to be within +/-2 counts of 2.5-volt in-

put calibration

7. First-day-after-turn-on stability +/-2 counts

8. Short-term stability +/-1/2 count

9. Long-term stability +/-2 counts

10. Consistency between oscillators over the -5 to +45C range +/-1 count

11. Analog sample period 2.5 ms or 5.0 ms

An 8-bit accumulator has a digital output range of 256 counts, or slightly better than 0.5-

percent resolution. The oscillator nominal voltage input range of 0 to +5 volts requires an output

range of 200 counts, but a "safety margin" of 0.5 volts would be desirable. The 56 extra counts

should be divided nearly equally above and below the nominal extremes, thus defining the frequency

of the oscillator as

__-30 counts at 5 volts 12 kHz at 5 volts
2.5 10 seconds per sample

and
__230 counts at 0 volts 93 ^ ^ 0 y^s.
2.5 10-3 seconds per sample

A similar calculation for a 5-millisecond sample time yields a 6- to 46-kHz range for the

oscillator.

The oscillator should operate nearly linearly over a large range, from +5.5 volts to -0.5 volts,

so that, since

200 counts range 20 counts

5 volts range 0.5 volts "safety margin"

it follows that

___10 counts at 5-5 volts 4 kHz at +5.5 volts
2.5 10 3 seconds per sample

and

__250 counts at --5 volts 100 kHz at -0.5 volts.
2.5 10~3 seconds per sample

A similar calculation for a 5-millisecond sample time yields a 2-to-50-kHz range for the oscil-

lator. This voltage-controlled oscillator must operate approximately linearly over nearly 5 octaves;

The input commutator may have up to 50 inputs commutated into the one analog oscillator. The

oscillator output may be gated into several binary accumulators for data storage until readout by

the spacecraft telemetry.

4
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THE MOSFET DEVICE

A detailed description of the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is

necessary because of its particular properties, and because many similar devices are produced by

industry. The "P" channel MOSFET is constructed on an N-type body with the P-doped diffusions,
as shown in Figure 3. A layer of silicon dioxide insulates an aluminum "gate" from the device,
producing an input impedance of hundreds of megohms. This property is utilized for the commu-

tator and oscillator input gates. As the gate is made more negative than the more positive P region,

a channel is formed, as shown in Figure 3, producing characteristics as shown in Figure 4, when
the MOSFET Is used as an inverter. The MOSFET is used as a saturated inverter switch in the

analog commutator and in the digital circuits in the accumulator.

-12V

^ATE ^LOAD ’^
GROUND

<------VDRAIN

1-------- ALUMINUM GATE

SILICON OXIDE INSULATOR

P-DOPED "-^ B^--^ ^/-"^ P-DOPED
DIFFUSION ---" ^5--^’ Q DIFFUSION
SOURCE

^ ^ ^-^ DRAIN

N

BODY (WAFER)

LOGICAL GATE DRAIN VOL^E^FRACF CHANNEL
VOLTAGE VOLTAGE ^TRACTE^’

HARD OFF 3 VOLTS 12 VOLTS CURRENT LIMITED A

ALMOST OFF 4 VOLTS -11 VOLTS CURRENT LIMITED B

PARTLY ON 7 VOLTS 2 VOLTS OHMIC C

HARD ON 12 VOLTS VOLT OHMIC D

(ASSUME 4-VOLT THRESHOLD DEVICE)

Figure 3-The MOSFET as an inverter.
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-12V
Part of the analog oscillator utilizes the

MOSFET as an emitter follower, or source fol- ^ 5 K

lower. Figure 5 shows the change in gate-to- __ll-’ "
source voltage as a function of current through v^sTr"1
the device. In general any linear change in the DRAIN-TO-SOURCE VOLTAGE

oscillator with voltage input can be calibrated -12 -IP -s -6 -4 -2 p
out, but any non-linearity is difficult to cancel -^ ~~~---^ ^" r^l
out. The non-linear change in this device is about -5 ^^^^^^^^’r’7 /^//
lOpercentoverthe entire range of interest (10 to -6 / .--^^^y^ 2 1
250 microamps), but is less than 1 percent if the ^-- """""""/./ // 3 ^two piece-wise approximations can be made. ~~^~~~~~~ /^ ---^T^,/ / 4 5

As explained later, the analog oscillator will ___---^/ 5 1
achieve this result by employing two different -8 /’^----------^’ ^^GA’T^TO^- 6 |
source followers, both determining the fre- _----y^’ / y^ DRAIN CURVE_ 3

quency when less than +3 volts is put into the / ^_^_---.^^ g
oscillator. Only one source follower deter- _-1^-^-^^^’^ /

mines the frequency when more than about +3 ^^VOLTAG^"/ 9

volts is put into the oscillator. Slightly different "SATURATED CURRENT ^NON-SATURATED CURRENT-J ’
REGION REGION

Figure 4-Inverter MOSFET drain characteristic

OSCILLATOR |-T D at room temperature.
INPUT VOLTAGE y ’<:?""GS ^R=]OKf-I

^sv values for R in the two source followers will

6.01________ .-.y o produce a nearly linear result.

5-0 ------^^ ^-^i-- 30 rp^g temperature effects on the MOSFET

/ ^^+25c when used in the source follower circuit are

4.0 ^/a so quite large, but nearly linear, as shown in Fig-

////-’"+85 c
I s ure 5. The 0.15 volt decrease in gate-to-source

n
3 o Uf-i.--- 130 ^ voltage from -35 C to +25 C is about equal to the

^c^ro^ /y^ r^NEAR’5’ S 0.15 volt decrease from 25 C to 85 C. This

INPU^^OLTAGE_ ^<^_A,pRoxiMATlON ^ ^ ^^^^^^ compensated for by a cor-

y! ,’ s0/" OF ~_ a respondine; voltage drop in the +8 volt regulator
_^J’( L-NOMINAL SCALE

/il -_ u supply as the temperature increases. When

i-o -----T-W’ 240

^ the gate and drain are maintained at nearly
ill

/ "/,’ ~- a equal voltages, the MOSFET gate-to-source
0-0 / I! -_ voltage varies linearly with temperature, as

^^Hn ’- 310 shown in Figure 6. This property will be uti-

’o iij : lized in the MOSFET regulator as described later.

U-L- ~- 360-6.0 -5.0 -4.0 -3.0
The MOSFETS used in the analog oscillator

GATE-TO-SOURCE VOLTAGE
almost completely determine the voltage-to-

Figure 5-Source follower MOSFET characteristic, frequency characteristics of the oscillator, and
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it is only because of the particular voltage-to-

current characteristics of the MOSFETS that T y
IT

the analog oscillator described later can be r-[
-|j_| ’G D

made linear and temperature-compensated to a 4’
high degree. +v

THE ANALOG COMMUTATOR +0-2 ------^,^^
The IMP spacecraft encoding systems will +0.1 \ /

include an analog data processor, which multi- CHANGE IN \ /
plexes the outputs of voltage monitors, temper- "^vc^A^" ___\Z____
ature monitors, and experiment sensors into WITH SOURCE AND ~/\ D >’AM(’

BI=>DY COMMON / \
one analog-to-digital converter, as shown in / \

Figure 7. Three performance parameters, PP1, -0-’
/ X

PP2, and PP3, are shown in this simplified ex- y ^ -ID" ’"ijAMP

ample. The resistors R,,., are 100 kilohms to -0.2
IN -35 +25C +85"C

500 kilohms, and represent a constant load im- TEMPERATURE

pedance to the experiment, with the remainder
Figure 6-Ideal variation in gate-to-source voltage

of the commutator appearing as an insignificant

additional load. The resistor RLIMIT is about 1

kilohm to limit the current drawn if a very high positive voltage is put into the terminal PP1.

Diode D clamps the voltage so that MOSFET L will be able to turn off by application of +8 volts

to the gate of L^. This prevents cross-talk to other sensors being commutated. The body lead of

L; must be more positive than the +8.7 volts to which the source is clamped, to prevent leakage.

When commutation of PP1 into the analog-to-digital converter is desired, square waves A, B, and

C are all negative, turning that branch of the logic matrix "on." The positive voltage on the gate of

L turns device L "off." The -10 volts applied to L^ gate is sufficient to turn the L^ device hard

"on" even if the input PP1 is at ground. The source-to-drain impedance of the L device is about 1

kilohm when the gate is more than 6 volts more negative than the source. The source-to-drain im-

pedance of the L^ device is hundreds of megohms when the gate is +8 volts.

As the waveforms in the logic matrix change, several microseconds are required for the new

analog voltage to be gated "on," because of the high resistor values, which conserve power. The

analog-to-digital converter will not begin taking a sample until at least 2.5 milliseconds after the

new analog data line switching has begun. Thus this circuit conserves power by allowing non-

critical switching times. Negligible additional loading (hundreds of megohms) of the sensor de-

velops during the commutation of the analog voltage.

THE ANALOG OSCILLATOR

The MOSFET source follower characteristics produce a 4-percent non-linearity current output

due to the non-linear change in gate-to-source voltage with current. The current as shown in Fig-

ure 8 will determine the frequency of a multivibrator, producing approximately the same non-linearity

7
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ANALOG ^Q

1"^ pRoc^oR OTHER ["""L^Gic"""]PROCESSOR ANALOG MATRIX
DRAINS r8"

^MEASURE +8V ^j ^.A

^ D^ +9.5V A-------,
PP^ ^r"u ipf~p LM ’I ^^sj-^--r^^F - ^ ’ r

$10K RIN^ LIMIT L’
GATE PP] IM1 i GATE!____^______^ r.
GATE P, 1 ^ -------I

500K^ 500K^ J 14-C ^ ^l
+8V

+8V ’ov L______ .__J

k. R D~fy +9.5V
IPP? ^ TEM’’ T

TEMPERATURE J"^ \

/^~\ T > ’^I-IMIT T I-; (~ATF PP7SENSOR (T< RiN f -T- 5^--^ |< ______!’

^ 500K ^< 500K ^
+8y -10V

Da’!" +9.5V

PP3
To 4---( \------------^AA-----| |----- +8V

SENSOR ^ Rj^UM. ^-^ L,L__
^
GATE PP3___________________^

^ 500K 500K ^-]OV

MATRIX ~j
/-S__________ ^^L^ READ OLIT GATES

COMMON ---t )---------i 2.5 MS

-^ ^ _1_______t TO
<^S -1-->\ DIGITAL

10V ----(J------ ANALOG 8 BIT I^|| DATA_. +9.5V OSCILLATOR ACCUMULATOR -)--111 MULTI-

+8v r^ -4- ^-f-n ^lv PLEXER

T ^ RESET

,. A 1^ ^1 +12V I_______ VOLTAGE ANALOG~rO
’^’ REGULATOR DIGITAL

CONVERTER

Figure 7-Simplified analog data processing system.

in frequency. The operation of the multivibrator begins with Q; "off" andQ, "on." The current

I will charge C in some time period r^ until (c^ is turned "on." This forces the base of Q^ to go

negative almost+V volts (-8.82 volts, in this instance). This turns Q "off, "causing the base ofQito go

even more positive, thus reinforcing the switching action. Then I ^charges C^ during a time period r^,

until Q is turned "on" again, thus turning Q "off." This switching action returns the oscillator to the

original state. Since the input voltage-to-current characteristic is non-linear, a similar non-linearity
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will occur in the voltage-to-frequency charac- 6 +8.82 VOLTS

teristic, producing a higher than desired fre- 5 5 (- L? Rl R2^
5 25 X <15.1K INPUT ^>quency at high currents, as shown in Figure 9. Jy T (VOLTS) i

^ ^J1 t<
However, if R^ is made infinite, and R3 pro- v^ I -i’ ^^vides a nearly constant current to C^, the out- ^ ^.
put frequency will approach 1/T as I increases > ’^A iOpAMps=4%

and r^ approaches zero. Note that this is the ^ ^\ NON -LINEAR

opposite effect from when 1^ supplied current; i 3 x\ R^ c r \
thus a combination of 1^, ly and 13 can be se- S ^\\ V"*’---bt^"*1-- ?
lected to approach a linear characteristic. This 9 \ \\ ^ T*.2
is shown mathematically as approximately: 2 \ \\

\ \\
i dV ^ \ \\

5a; tooth \ ^. 1, ,DEALc" dt \< \ LINEAR
Or T ^\\ \ CHARACTERISTIC

2 \\ \^
0 \\-^ Xrn f"0-^ c \\ \

dt T- dv -0.5 HIGHER THAN \\ \
Jo Jy DESIRED CURRENT-A \ \

_!________I_________I
0 100 200 300 400

C SOURCE FOLLOWER OUTPUT CURRENT (^AMPS)

^ \ ""n Figure 8-MOSFET source follower input to
analog oscillator.

1 1
OUT ’rl+T2+TswncHWG C^^ +O.s) Cjv^+0.5)

I^I^’ ^ ^ ____+v______
where m practice osc INPUT 1--

5.5 R3:l R’? (VOLTS) ^2
IV^ - 0.51 . |V| , _\ ^1-------1^’\ ^___ 11 I;

\. +V +V
f ’^k

4 X’^^c^^w Qi^r"*-^-- -^-Loiv % v % v v \\\ J’ \ \ ^.
IN GS N.V’’’ \ \

(V^ oscillator input volts, 5 3 ’\\ \ L^^T^^^z X^ \ w2 T~
Vyg gate-to-source voltage as determined by \ \^\ X-o^v/--y--i

the source current) <, 2 \ \. \ swi-__ J/

^SWITCHING y \ \
0 \ "-

v v v \
"IN ’as \

I’ El ^l \IDEAL
0 PI \

v v V n 1; \
’IN GS ~’JJ ’]

I2 R^ 0 20 40 60 80 100

OUTPUT FREQ-kHz

3V
3 2Rg (average Figure 9-Linearity correction characteristic.
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and

v v -V
1 1 "IN ’GS

f0"1 ’ 4^1; - T:) cv ^. ^) "(’T---^. t B-)
\ / \ / R^ + 2R /V V -V /\ K! ^"ay "IN GS^ /

LINEARITY CORRECTION TERM

or, if 13 is negligible,

V V -V
1______ _________1_ "IN -OS

^UT % 1\ A / R + R \ CV(Ri +R;,)cv T + 17 cv v -v -v\ 2/ \’ IN ’GS/

Thus the non-linear input MOSFETS voltage-to-current characteristic is canceled by the non-

linear effect to the multivibrator of the linearity correction term 13.

As the input voltage, V^, increases, the frequency output decreases. Any change in threshold

voltage, Yog,produces the same amount of change in frequency as an equal change in the input volt-

age, VIN, would produce. The same change in the supply voltage, V, will change the output frequency

only about 2/3 as much because the sawtooth amplitude changes to help compensate. Since V^g will

change because of temperature, radiation, and other effects, the supply voltage, V, will make a cor-

responding change, such that

50. OF TOTAL AMPLITUDE. , (v + AvJ V^-(v^ AVps) V^^
/ ^\ / ^UT K K

5-5
/’ A MOSFET within the voltage regulator will per-

5-0 /x form this function.
ff

V; / The multivibrator is not a perfect current-

> .^ to-frequency converter; thus some of these

// characteristics must be considered. As the cur-
3 ACTUAL //
z 3-0 VARIATIONS "/ rents I and 13 increase, the transistors Q and

g / / Q^ will be held on harder, increasing the stor-

S 2 o ^// ^LSe time at the mc)ment oi switching. The total

| //’ !% OF TOTAL AMPLITUDE sawtooth voltage amplitude, Vs,, varies because

// of this effect, as shown in Figure 10. A small in-
1’ ^/ \ crease in the Q and Q base diode drops alsoy \ IDEAL LINEAR VARIATION

occurs with increased current. The total Saw-

0,o x tooth amplitude plotted in Figure 10 is nearly

Q 5 J/ linear; thus this variation is calibrated out of

____l____j____I____I____I the oscillator.
8.0 8.1 8.2 8.3 8.4

TOTAL SAWTOOTH AMPLITUDE -VOLTS When low frequencies are generated at high

Figure 10-Multivibrator sawtooth variations, input voltages, the current required to turn (^
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or Q^ "on" is dependent on the value of the load F^ f--|
resistors R^. Since the oscillator should still ---* _____’ ______; I--*
operate with less than 5 microamperes flowing o :R1 ^0
into the Q 3 base at 5.5 volts, a complementary -*ji----’’----1^-2-"
multivibrator was substituted for the simpler R3 VOLTAGE-TO" 4

11 CURRENT 11
version, as shown in Figure 11. The 0.1 micro- 1-- CONVERTER _j_

ampere steady state base current into Q^ and "L--r’-Kg-----y~y-’"’c^-f.--’
Q g is capacitively bypassed to provide very fast .’I-1---(-T^H f^T. / T r Qj

multivibrator switching at very low frequencies. il~\ ^’’" 1
If a voltage higher than +6.0 volts should exist C3>^ \ c4 J
for even a short instant, the multivibrator would ^ ^ "*~ OUTPUT

stop operating, because of lack of current 12.
The ability to resume multivibrating when the I!--- ’---\ /---’-II----"

C ^\. .^^ (~

signal drops again to within normal limits is r\^
doubtful, and it depends on the fall time of the ’^’A }-------/ x________^ Qs

signal when within the normal voltage range -L .v nr Q4 J-
again. To prevent such a problem, a minimum STOP, COMPLEMENTARY

multivibrator frequency is determined by re- MULTIVIBRATOR

Sistor R4, in Figure 11. Figure 11-Complete oscillator circuit.

The operation of the entire oscillator can now be understood. The analog-to-digital conver-
sion of the voltage V;^ is accomplished by gating the oscillator output frequency into an accumu-
lator. To achieve the maximum resolution, of plus 1 count and minus no counts, the initial phase of
the oscillator operation should be at the same point at the beginning of the sample. If MOSFET

Q4 in Figure 11 is held "on" for 2.5 milliseconds, then Qg will be held "off" while 13 and I; will

hold Qs "on." This will turn Qg "on" and Q^ "off." At the time a sample is to begin, Q^ is quickly
turned "off" by pulling "-Vosc stop" above ground. Then current I, and 14 will charge capacitor

C, until Qg begins to turn "on." This will turn Q^ "on" and Qg "off," thus reinforcing the Qg
"turn-on" process, until the switching is complete, with Qg and Qg "off" and Q, and Qg "on." The
base of Qs is now at -(+V) and slowly increases as C^ is charged by 1^ and 13, until Qg begins to
turn "on" and the circuit returns to the original state, except that Qg base is then at -(+V). Oscil-

lation continues at a frequency determined by 1^, Iy \y and 14 until stopped by a negative voltage
at "-V osc stop."

The capacitors Cg and C^ are large enough to fully switch Qg and Q 7, with only Rg and Rg
holding the circuit in the steady state. CR2 and CR3 clamp the tum-off transient of Qg and Q^
respectively, so that only 1 volt base change is required to turn the Qg or Q^ "on."

The "-Vosc stop" voltage must be about -9 volts to turn Q 4 "on" well. If V;N is a large nega-
tive voltage, 13 becomes quite large, and the internal "on" resistance of 04 could allow Qg to turn
"on" when not desired. Thus a limit to the negative voltage possible is desirable. The MOSFET
commutator will prevent more than a -5 volt input to the oscillator.

The characteristics of the multivibrator over a temperature range of-35Cto+85C are mainly
dependent on the timing capacitors C and C since the transistor gain changes do not affect the

11
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saturated logic of the complementary switch

multivibrator significantly. Consequently Ci
and C, are very stable, high-quality capacitors.

The linear temperature characteristic of these ^capacitors, as shown in Figure 12, has only a !=

0.1-percent non-linearity in capacitance change ^+I’0 ---x
with temperature. The +140 parts per million u

0.1% ...-s;"’’’^^’^
per degree centigrade temperature coefficient o ^\-’^’:’’:’::^
will be calibrated out by the oscillator power z -^-^’^^’^^regulator. The resistors employed in the 5 (’’"es’^:=^’

i. o
voltage-to-current generator change less than g
25 parts per million per degree centigrade from g

-55C to +175C. The 0.3-percent change in

resistance is small enough to neglect over the

normal operating temperature range. ____l____l____i____\____l____l
-40 -20 0 +20 +40 +60 +80

TEMPERATURE DEGREES CENTIGRADE

THE VOLTAGE REGULATOR
Figure 12-Capacitor temperature characteristic.

The analog oscillator frequency depends

greatly on the supply voltage from which it is

powered. This voltage is adjusted to determine the frequency at +5.0 volts, and must change with

temperature to compensate for the temperature coefficients of the MOSFETS and capacitors. Any

small change in threshold voltage in the input MOSFETS must be compensated for by the power

regulator. Thus a voltage reference using a MOSFET was chosen, with the original circuit shown

in Figure 13a. The input voltage Vp is around 12 volts, and the required regulated voltage is

about 8 volts; thus Qn drops the voltage difference of about 4 volts. The regulated voltage is

divided by Rg and Rg to produce a voltage Vi. The MOSFET 03 acts like a poor zener diode volt-

age source when its gate and drain are connected together, as was shown in Figure 4; thus V; V^
Yog The difference amplifier Qg and Qio amplifies any difference between V\ and V;,, and in-

crease or decrease the current to correct the voltage difference. If the oscillator input voltage

decreases, the current increases, and the regulated voltage decreases slightly by some AV. The

original voltages are indicated as unprimed symbols, and voltages after the change in current are

primed nomenclature, in the equations below.

Assuming that Qg and Qio loading can be neglected:

/ Rg \
Vi v,,, \^^
V V V
2 "REG ’MOS

12



where V-,s is ^e source-to-drain voltage;
YREG Qn p-I

/ R \ lOADl^C, ^ QJ T ^| ^ "yl^l
v/ (V^AV) ^) ^ in ^T ^-^-V2’ (^EG ^V) VM’OS t’7 r’

an (a) ORIGINAL REGULATOR CIRCUIT

\ YEG _______QH ^--
A(V,-V,) ^ (v,-v,-)- (v,-v,) ^^RJ(V^-V^-AV) T^ADT ^c, i^ ojl ^q yl^J

OSC I-- d ^_^_^Q L. QIO

(^EO-VMOS-V^-AV+V^) -r^ r6 I "y
^ ^7 ? RIO

/ R, \ ^------^------’
M^TRJ C^) + AV + Vyog Vy’Qg (b) IMPROVED REGULATOR CIRCUIT

where VMOS ^ VM’OS and where R; ^ R,, v^ ^___Q"_^-l
/ R6 \ /l^ LOAD nr’^s rAcR’^’ RA^l T^

^ -V.) -AV (l ^ ^) ^v(|-) ^ p,, ^U^^-----’
Thus in this circuit Q 3 is used as a zener diode, ^7 ^’^lo
without utilizing the amplification available in ~~~----^----^
the device. The regulation was improved by (c) FINAL REGULATOR CIRCUIT

using the circuit shown in Figure 13b. The
ngure IJ-Kegu aror circuits.

MOSFET Q^ now amplifies the change in gate-
to-source voltage, which is

^cs [(VHKO V;) (V^ V,)] (V,^ . AV) ^1 ^) V,,, (l ^^ .AV (l ^R6^-)
so that the change in voltage at the difference amplifier, as previously determined, is still

/ R \

^l -v^) ^ [R^f (AV) + AV . V^ V^,

but now

V’ ^ V
MOS MOS

but instead

f ^d \ Re \ / R. \
^os VMOS % AV^ \^ AV (l R-rg-1 (-^) -^ (l ---R-) AV

/ \ "/ \ S 67
\ d/

13



where the amplification factor p. is typically about 40; therefore

/ R, \ / Rg \ / Re \
A(V, -V,) ^ -R^ AV + ^l-R^ AV ^ KTTR^ IX+AV)

% 20 AV if Eg % Rg

Thus a small change in the regulator will produce a bigger change in the difference amplifier, re-

sulting in a closed loop gain about 20 times larger in the improved circuit, as shown in Figure 13b.

As the oscillator is cooled, the gains of Qg, Q^o, andQ decrease, but the gain of 03 increases,

making the degree of regulation almost constant with temperature. As mentioned previously, the
^

temperature coefficient of the MOSFET is linear and proportional to the current through the de-

vice if the gate and drain are connected together. This is still true in this improved circuit, be-

cause the difference amplifier holds V^ very close to V,. Figure 14 shows a comparison of the

regulator outputs for these two circuits with the output from a zener diode regulator which was di-

rectly substituted into the circuit shown in Figure 13a.

The only problem which developed from the "improved" regulator circuit was that V^s volt-

age drop was only about half of the regulated voltage, at the current needed to achieve temperature

compensation. Thus when a change in "threshold" voltage occurred in the devices in Q Q (Fig-

ure 11), and Q 3 (Figure 13), the regulator over-compensated by a factor of 2. This can be shown

mathematically as

/ Kg ^v! ^EG U?5 +RJ ^EG ^OS ^
0 ^S’"^ IMPROVED MOSFET REGULATOR Vygg

a\ ^/ VREG + K; \
\ - ^ V^< n ^ 7

0 7 \ ’’X
o /\ <\ \ where R,, ^ Rg,
z / \ \

ORIGINAL \ \ Vs MOSFET \ \ V ^ -^s- 2V
2.0 REGULATOR ^ \ VREG 1/2 "os

/\ ^N, VREG % ^OS + ^MOS
1N751A \ \

^ 3.o ZENER D Thus the final regulator circuit, shown in Fig-

o REG’U^OR \ ure 13C relieved this problem by three effects,

described as follows.
o \
c? 4’0

The placement of diodes CRia and CRib in

the source lead makes the 03 MOSFET appear

much more like the Qi and Q; MOSFETS in the

o 10 20 30 oscillator (Figure 11) near the +5 volts input be-
LOAD CURRENT MILLIAMPS

^^ ^ ^ additional source-to-body voltage.

Figure 14-Comparison of regulator performance. These diodes also add a large negative temperature
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coefficient to V^o "^2’ which is canceled out DROP-VOLTS

by a large increase in current through Q 3 which 7 6 5 4 3

also increases the "threshold" voltage of Qg, as y -35^c-^fl<s\+85ol(-
shown in Figure 15. The result was a voltage ORIGINAL SIff--

OPERATING ^ ’/ "TEMPERATURE 0 2reference about 2.5 volts larger for the oscil- POINT- ^ y COEFFICIENT

lator, which makes a change in "threshold" ABOUT 1/2 OF v^o / __2 5 VOLTS

voltage of Qi, Q,, and Qg track more exactly. / GREATER 0.4

This is shown mathematically as: ^-------^^ C^’F^C^T DROP $
~~/> ?5c //

V % V 2’! % V V V /ff-ROOM^fl -6
I -REG ’-’ "REG ’MOS ’2 A-+85C-y’/

/ 2 DIODES/y
MOS 5 VXD; DROP ///. 0.8

^EG ^ --8~ 4- ^OS M ///^CHARACTERISTICFINAL /// OF Q MOSFET
OPERATING /// 3

5 5 POINT- /// -11.0
^EG % T ^os -^ T^MOS ABOUT 7/9 / /’

OF V,EG

Thus a change in effective gate-to-source
Figure 15-Change in voltage characteristics with

voltage on Q and Q
3
MOSFETS due to temper- additional CR1 diodes.

ature, radiation, or charge migration is com-

pensated for by about 5/4 as much change in the regulated supply. The addition of a third diode to

increase Vygg to almost equal V^^ becomes impractical unless dependence on a negative supply

voltage is possible to operate the difference amplifier and supply current to Q.j. This well-regulated

supply is not available in the system herein described; thus we will settle for this approximation.

This final regulator circuit is now able to regulate the voltage supplied to the analog oscil-

lator, and varies almost the same as the MOSFETS within the oscillator as a function of temper-

ature, radiation, and charge migration. The resistors Rg and Rg are used to set the +5 volt fre-

quency of the oscillator at room temperature. The temperature coefficient of the oscillator is

varied by changing R-. The maximum operating current is determined by R,g while the mini-

mum current and ability to start with power turn-on are determined by R; i. The transients and

tendency to oscillate are reduced by C;.

The circuit is extremely independent of the supply voltage Vp because Q, supplies a current

f3 times that sensed by the difference amplifier Qg and Q ig, nearly independent of the collector-

to-emitter voltage. The voltage Vp must be at least 0.7 volt greater than the highest regulated

supply requirements.

THE DIGITAL ACCUMULATOR

The output of the analog oscillator is accumulated in an 8-bit binary accumulator. It is im-

portant to understand the sequence of events, so they are illustrated in Figure 16. At Ti, a new

analog commutator input is switched "on," and has until T3 to complete this switching process.

From T, to T^ the analog input drives the voltage-controlled oscillator, and the output frequency

is counted. From T4 to Tg a new analog commutator input is switched "on." From T4 to Tg the

15



TIME To T, T; Tg T^ T, T^ T^

^SAMPLE A^ ^SAMPLE B- ^SAMPLE C^

OSCILLATOR _| |__________^ I_________! I------- C,
STOP GATE

BUFFER STORAGE ;______^p^ ^____________SAMPLE B------I
CONTENTS

BITS BITS BITS BITS

TELEMETRY i,n,m,ig ;g,gi,-gii;gni r,n,ffl,ig JY,-gi,m’ginj
READOUT I"
BUFFER ___________^ L__________

TRANSFER

RESET
ACCUMULATOR

AVAILABLE
LOGIC SIGNALS 1-----I j----[ i-------

cl J---------i I----------------------------1-------
J--------------- ~~\--------------

Figure 16-Sequence of events in analog-to-digital conversion.

contents of the accumulator are transferred to a buffer register X. After Tg, the accumulator is

reset and soon is ready to count the next sample.

Meanwhile, the least significant bits of sample B are read out into telemetry. From Tg to T,
the most significant bits are read into telemetry while sample C is being digitized.

A block diagram of this circuit is shown in Figure 17. The entire accumulator, buffer storage,

and readout logic will be about 350 MOSFETS integrated on one chip within a 22-lead round flat pack.

The system now being fabricated for the IMP I spacecraft uses two analog-to-digital conversion

subsystems with a total of 117 analog inputs, and digital storage in 121 separate accumulators. One

subsystem makes conversions every 10 milliseconds for 800 milliseconds, and recycles every 2.5

or 10 seconds depending on the telemetry rate. The other subsystem makes a conversion every 40

milliseconds or every 160 milliseconds depending on the telemetry rate.

THE ANALOG OSCILLATOR SYSTEM PERFORMANCE

The flight-quality analog oscillator performance will be described, along with calibration pro-

cedures and testing methods employed. The data shown in Figure 18 demonstrate that the oscil-

lator could be operated and calibrated over a wide range of voltage inputs and frequency outputs.

The detailed description of the system performance will be restricted to the circuit to be used in

the IMP H, I, and J, but this treatment does not imply that only these voltage and frequency ranges

are practical.

16
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^-S i-?D---------^h^
l-r’N’o/----’ =o------.--Q^^

100K \^_ ^’ -^

T ^oon -2V 4^)----^^^^^^^qs.
OSCILLATOR 1 ^ Z \_^ F^
INPUT FROM i-1-----$-! > 20K /f^\
COMMUTATOR ANALOG ______1 A- \r^__^------------->> OSCILLATOR OSC OUTPUT ^JN/1’^ X X 2J X X X xJx^ Xs

-v f ^--v /X, f t f t f t f t
OSC ? r-(FREEZE)-Ol ^/ B AND GATES \

^_ \^ ^ f t f t f t f t
?S^ ’^P ^---’^ A! A J A3 A4 A5 At A7 Asr ^ ^ i t i t i t t

f-- -( XFR )--[>---- ^d/^>---------
____I-I /^~^\ /’ ^\ /^ TO BE ONE FLAT PACK

+7V +7V ^^^GND
Figure 17-Integrated digital accumulator.

J DEVIATION DUE TO MINIMUM FREQUENCY RESISTOR

6 X/,’’^0-4’ kHZ DEVIATION

>^ IDEAL SLOPE POINT
5 ^>r^\ -0.032kHz DEVIATION>< -0.022kHz DEVIATION

S 3 >^0 ^\
> ..-0.080kHz DEVIATION

2 X’s ^ \^ ~^ ^--0.079 kHz DEVIATION

0 ^\
\ ..-0.095kHz DEVIATION

5 0 X^=! -^ \ /’+0.035 kHz DEVIATION

0 -, ROOM TEMPERATURE ^^^.0.059 kHz DEVIATION

\^ ^+0.07 kHz DEVIATION
-2 Y

^ \\ +0.22 kHz DEVIATION
-3 Y’’

^ \’^ +0.30 kHz DEVIATION
-4 X^ IDEAL SLOPE

^ ~\ POINT
-1 ___________1 ^’0 20 30 40 50 60 70 80 90

OUTPUT FREQUENCY IN kHz

Figure 18-Typical oscillator calibration.
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Test Equipment

The test equipment used to check performance of the analog oscillator is composed of several

parts. A set of calibration voltages can be fed into the oscillator manually, or through a flight-

quality MOSFET commutator, as previously described. The oscillator can be gated "on" and "off"

just as it would be in the flight equipment, with the output counted by a commercial counter and

printed at the 3-lines-per-second limit of the printer. The oscillator can be left "on" and the fre-

quency counted to high resolution. Since calibration is needed with greater resolution than flight

resolution, the sample time during which the oscillator is gated "on" can be up to 8 times as long

as it will be in flight operation. Since the deviation from ideal nominal calibration will be small,

only the deviations from nominal will be discussed.

The analog commutator gates into the analog oscillator under test a series of signals, ,as

shown in Figure 19. The first 8 samples are 1-volt increments over the range, with 1/2-volt

checks beyond the normal operating range. Samples 9, 11, and 12 are voltages gated into the os-

cillator in opposite order from Samples 6, 4, and 2 to check for hysteresis effects of the commuta-

tor and oscillator. That is, a large input capacitance or local heating of the MOSFETS converting

input voltage to current does occur and causes Sample 6 to disagree with Sample 9, Sample 4 to

disagree with Sample 11, and Sample 2 to disagree with Sample 12 by about 1/4 of a flight count,

or about 0.1 percent.

OVERVOLTAGJ^OPERATION CHECK rp^g commutator Sample 10 is 3 volts applied

6 ^CA^RAT^ON- "^ f through 2 megohms. The slight leakage currents

^ ’55 ^P-l HYSTERESIS---^ /S^P^YT^ of the MOSFETS. modules, and cables can be de-

^2 ^
_| CHECK /_ tected, and normally produce about a +/-0.05-kc

^d 3 U _J I ^AVERAGE deviation from the low-impedance 3-volt frequency.

2 g 2 L \ I SQUARE WAVE This represents an 8-millivolt change in voltage,

1 ’-i^-ilADc ^ir-F I or a 2-nanoampere input current to or from the

^ Z NV^TFRF^I^ IMrbUAlN^I w.

^- o r’HFCK ’-l ^CH^^ "H oscillator. This measuring technique is simple
_n |_ 2 MEC’UHMb

Kc but is susceptible to the noise from stray ca-

o’ ’2’ ’4’ ^’V’ \~^~ V^H^ pacitance coupling to the oscillator video out-

PERFORMANCE SAMPLE p^ and gating functions.

Figure 19-Test equipment commutator output.
Sample 14 applies an abnormally high volt-

age to the oscillator, and then brings the voltage

down quickly. Early in the development program, this test demonstrated a problem and, as a result

of this test, the minimum frequency resistor was added to the multivibrator to insure operation

even with an instantaneous overvoltage. This test continues to check operation during an instantane-

ous overvoltage condition.

Sample 15 applies a voltage step function to the oscillator input at the same instant the

oscillator is gated "on." Any large capacitance effects through the commutator or at the
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B ^ i" i--L L ^-------x,-p;--r-----^----H
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L L"’ J’" ^ ^ 5

r-| ___________[

Rl-p^
A^ -^ r^!-^<-^^- 11 u+^
U 1 .i,-!, PAET& LI&T’___________________________

~(y- -(y-Q)(R)-1 .t, -1,6%,
fptn--^ Q3--) j. ,--L--4---T04 ^^-^ERIFIL-OZMFD

’^ ’X’ .7,&8,.q^l0- TAUW-UU Z1L1FD,^OVOLT
I____(wi II-(^TV-c ^^^-

} (EC BCUaM)

i L’-’’ ^6- ei*),e2a-5iuEi,^AeBfflj ^)MP06iriokj

-Q)- -(i)- eii,e’n iooi, .ou?o6iTiou
1 _________|L i’11" -IUEi,,(^E60U60MP0^171oU
p ei4,e’zs- ioi, i^BeotJ coMpo&iriokj

U ^ -i- <ABBOH <10MP06iTIOU
\ / 01,02,0^(?t.-TI-MS?lflA

p-1-! i- _____jL _J N.^ L_ >^’1 OS04,(37-T[,-&P100
OUT’ J t-S}, C.V.Z-

x^__. -rai 6E^^E4,626 -.COUPUTEe lU4fct

^ Sk LI.L^-SELECTCD t&Ml)
[___ ^______________________________| t,Ml1

i__________________.-
^

’NOMINAL

[ [tn.^ VALUE(.KJL)
r r"H r~^J ^DJ TP,,

^-^

Figure 20-Final analog oscillator circuit.
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oscillator input would delay the voltage step and produce a much higher oscillator output count if

a problem existed. This specifically checks the phased delays of the 100 k ohm input isolation

resistors R, and R^ which were added to allow operation to continue if either MOSFET (or both)

should short because of electrostatic discharge. It is believed this resistance lessens the possibil-

ity of such damage and would allow redundant, parallel operation of analog oscillators if desired.

The step function is produced by a complementary transistor inverter with a matrix gate signal

as its input, and its output shunted to +4 volts.

The last test applies a 25.6-ld.locycle phase-coherent square wave to the oscillator input, be-

tween nearly ground and nearly +4 volts. H the oscillator performs a true averaging of the sample,

then the output should be the same as the 2-volt sample (Sample 5 in Figure 19). The final oscil-

lator circuit square wave average is less than one count (0.5 percent) different from the 2-volt

calibration. By contrast, such a response from a high-impedance transistor emitter follower was

found impractical because of the unsymmetrical impedance of such circuits. The MOSFET, how-

ever, is symmetric with low capacitance and nearly infinite impedance, thus the MOSFET channel

current is modulated proportionally to the input voltage, even at a high repetition rate.

Final Analog Oscillator Circuit Calibration

The final oscillator is shown in Figure 20 EFFECT c

with several resistor networks in series and R^&R^ MINIMUM

parallel to aid calibration. As shown in this +5 COUNTS
F^QUEN::Y c^RCUir

diagram, Rr, which is trimmed by Rn, allows +i.okHz /

adjustment of the regulated voltage to make the ./
room temperature frequency at +5 volts nomi- +4 COUNTS \

+0.8 kHz

nal. Then R 10 is increased to trim Rg if the 3-

volt frequency is higher than nominal, or de- \
creased if lower than nominal. Finally R5, is +o.6kHz \
trimmed by Rg, to adjust the oscillator fre- \

quency at ground to the desired frequency.
^ COUNTS \ \

These three adjustments interact, but by sue- +o.4kHz ^ ^cessive approximation the three points can be \ \ _^ -35c

adjusted as close to nominal as desired. The +1 COUNTS \ \ / ^^-/.
+0.2 kHz \ /

oscillator is then temperature-cycled from \ \ / +85c

-35C to +85C. A chart of typical resulting \ s\/ /, +25c

calibration deviation is shown in Figure 21. ^BRA^N \- 4 -A~-’4--22-^o~-38-;^6 -50
CALIBRATION ^z’^kHz .kHz kHz kHz kHz kHz kHz kHz

If the calibration is generally too high in ^/

frequency at high temperature and too low in -1 COUNT \-^-’

frequency at low temperature, the voltage reg-
+5.5+5.25+5.0+4.0+3.0 +2.o +1.0 o.o -0.5

ulator temperature coefficient can be decreased

^^^^ OSCILLATOR

by increasing Riz or trimming resistor Ria. A

temperature profile of the oscillator is shown Figure 21-Oscillator calibration deviations from

in Figure 22 under two different temperature linear ideal-
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FIRST CALIBRATION ----1 CHANGED ONLY VOLTAGE REGULATOR
SECOND CALIBRATION -----J TEMPERATURE COEFFICIENT

OSC INPUT OSC INPUT OSC INPUT OSC REGULATOR
+5 VOLTS +3 VOLTS GROUND VOLTAGE

+3 COUNTS -, 6.6kHz 22.6kHz -i-i--|--| 46.6kHz -i--i--| 9.2 VOLTS

+2 COUNTS -----^-

1 ^+1 COUNT J--- _____^’ _\____

/ / V"" V7 \/ \ \ \\
NOMINAL ^^-- 6.0kHz -^- 22.0 kHz A -7 46.0 kHz ---\\-- 8.9 VOLTS

^ \ ^\ vv
-1 COUNT -^----- _-_\ _____L^ 3 3 VOLTS

-35 +5 +45 +85 -35 +5 +45 +85 -35 +5 +45 +85 -35 +5 +45 +85

-15 +25 +65 -15 +25 +65 -15 +25 +65 -15 +25 +65
C C C C

Figure 22-Oscillator temperature profile.

coefficients of the voltage regulator. The positive temperature slope at +5 volts and negative tem-
perature slope at +3 volts are not individually adjustable but are a result of small differences in

the temperature coefficient of the MOSFET threshold voltage at different currents. The tempera-
ture characteristics with a ground input are also not adjustable, but are affected by the MOSFET in

can Li. Thus a more favorable temperature coefficient MOSFET can be substituted in the oscil-

lator. These temperature effects are small for our application. Because the characteristics of

the MOSFETS, resistors, and capacitors are so similar, consistency between oscillators is quite
easy to obtain to within +/-1 count over the 35 to +85 temperature range. The resulting tempera-
ture coefficients are within the tolerances needed for this application.

Long-Term Stability
The long-term stability of the oscillator is verified by the following procedure. Each work

day, the room temperature calibration is taken, then the oscillators are cooled for 3 hours
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at -35C. Calibrations are taken and the oscillators are then heated to +85C. Calibrations

are then taken after 3 hours hot. At night the oscillators are normally left with ground input

voltage, but occasionally they are left with +5 volts input. A typical result is shown in Figure 23,

~~^^r\^^\
+20MV ^_

.85C--^

RELATIVE /) b ~^^ ^V" ^/s.
VOLTAGE -T----^ -V-’V^---, ’"~^- -\-----

(REGULATOR) ^-^/ ^^\ +25-C \

^-- L- -\ ’^r- ^""^ \ \ \_
IDEALLY ^-^ / -- s/-\-

-20MV -^ EQUIVALENT ^/ \^ ^-^ ’\^ ^( TOONECOUNT / -35C /^. \_ ->.--^

CHANGE POWER V^ -^-^, \
INTERRUPTION V ^’^V ^-N ^-^-, \

+ COUNT
6.2 kHz I/

+ 5V INPUT ’^^’ ^~~\
NOMINAL
6.0kHz ^-^/\r^ ^_ ^-^^

+250C

COUNT -^^\ -yY --^/Y- --<
’^- ^~- "\

5.8kHz \ / "-35C v^-" ^_^-^~>. ^__

+ 5 VOLTS \,
OVERNIGHT

+ COUNT
22.2kHz

r\ -35C
+ 3V INPUT ^-^- ^-^-^^_ \^_ _-^<- ^^
NOMINAL ^^~ ’^~^- -^--
22.0kHz

^
\-

-1 COUNT ^^" \^^^^/V~ ’^^^-^-^-, ^^__^Y
^^^

________
21.8kHz

^Tkr + 5 VOLTS
OVERNIGHT -35C

END INPUT ^ \. ^/ /^- -^-"- ^- ^ ^ -^NOMINAL ------^-’---v-s-- ’/-----_-^ .K^-_^- -----
__^~/\ /\. -/\^ \^- -(- -^y ^-’ ’^--- -^A^ -^_

-1 COUNT -^-
45.8kHz

ONE MONTH------- ONE MONTH ONE MONTH

Figure 23-Typical long-term stability.
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covering a period of over three months with about 65 temperature cyclings. The day-to-day repeat-

ability normally appears to be within 1/5 of a count, or 0.1 percent, which can be due to a +/-2.5-

millivolt variation in input voltage. Long-term stability appears to be a function of two effects.

One multivibrator was operated with fixed resistors in place of the MOSFETS and experienced a

0.048-kc steady increase in frequency over a three-month period. This represents 1/4 count in-

crease after about 65 temperature cycles in three months. The regulated voltage slightly increases

in some oscillators, and decreases in others. This probably reflects a change in threshold voltage

of the MOSFETS within both the regulator and the oscillator. H the decrease in MOSFET threshold

voltage as shown in Figure 23 had not been compensated for by the decrease in regulator voltage,

a 2-count increase in the +5-volt calibration should have occurred. But because the regulator

slightly overcompensates for the decrease, the frequency drops almost 1/2 count at the 5-volt

calibration. However, the long-term increase in multivibrator rate causes more of an effect at the

ground calibration, increasing the calibration about 1/5 count. The MOSFET voltage change affects

the ground end less, because such a change is a much smaller percentage of the total frequency-

determining current.

The effect of leaving the oscillator at +5 volts instead of the customary ground input over-

night affects some oscillators more than that shown in Figure 23. The entire calibration will be

as much as 1 count, or 0.2 kHz, higher than normal. The speed with which the calibration returns

to normal is temperature-dependent. At -35C the calibration is still high by 1/2 count after 4

hours. But at +85C the calibration returns in a few minutes. This has been found to be due

to a change in the MOSFET threshold, and could be some charge migration effect. This ef-

fect has been eliminated in flight use by regularly gating a voltage above +6.5 volts into the

analog commutator (at a 5-megohm impedance) at a time when no analog-to-digital conversion

is required.

Figure 23 shows the long-term stability at the extremes of temperature, with no noticeable

variation in temperature coefficient with time. These tests are much more severe both in amount

and frequency of temperature cycling than are ever expected in flight. The oscillator appears

quite stable even under fast changes in temperature, although this is not important in our application.

The characteristics soon after power turn-on are important. They are tested by automatically

commutating the calibration voltages as soon as power is applied, and comparing them with the cal-

ibration 5 minutes later. Typically, the frequency drops 4 counts from the previous long-term

calibration, and tends to return to this calibration value exponentially; so that it is only about 2

counts lower than normal after 5 minutes, and 0.5 count lower than normal after 24 hours.

These tests indicate that the largest instability will be at the +5-volt calibration, because of

the small differences between the regulator and input MOSFET threshold voltages. Since one of

the MOSFETS in the voltage-to-current converter affects the +5-volt frequency calibration much

more than the other does, the regulator MOSFET is put into the same can with that one, to mini-

mize temperature and radiation gradients.
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The effect of changing the input supply voltage to the regulator is less than 0.1 count over a

range from +10 to +13 volts.

Power Dissipation

The power consumed by the various parts of the oscillator is shown in Figure 24. The regu-

lator consumes the major portion of the power because the oscillator load is so small. The total

current is monitored during testing to insure proper power dissipation.
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Figure 24-Power consumption breakdown.

Mechanical Layout

The oscillator is calibrated in breadboard form, then the components are assembled in welded

modules which are laid out to minimize capacitive coupling between the high-speed switching cir-

cuits and the high-impedance circuits. The change in calibration is about 1 count because of the

reduced stray capacitance. The final stage involves potting the module in ECCO FOAM except for
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the trimming resistors. After a month’s burn-in, final calibration adjustments are made before

potting of the trimming resistors.

SUMMARY OF RESULTS AND CONCLUSIONS

A low-power, low-speed analog voltage commutator has been developed that utilizes MOSFET
switches to gate analog inputs sequentially into a voltage-controlled oscillator with no measurable

increase in loading during the sample.

The oscillator input employs MOSFET voltage-to-current converters to drive a multivibrator

from an internally compensating voltage. A matched MOSFET voltage reference compensates for

changes in the MOSFETS due to temperature and radiation. For the full 3-octave frequency range,

linearity and stability after turn-on can be held to within +/-1 percent from -35C to +85C for

inputs from 0 to +5 volts.

A great saving in size and cost of the digital output storage (Figure 25) has been made possible

by using a MOSFET integrated circuit with all the storage in one package, thus making multiple

sample analog-to-digital conversion data storage practical.

The potential applications for this analog-to-digital conversion system appear quite broad, and

may find use where ultra-high input-impedance and microminiaturization are important. The ex-

tremely broad range of frequency and voltage over which these concepts could be extended may
allow measurements to be made which were impractical previously.
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Figure 25-Savings in cans by more highly integrated MOSFET technology.
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